
Dual EC: A Standardized Back Door

Daniel J. Bernstein1,2, Tanja Lange1, and Ruben Niederhagen1

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org, ruben@polycephaly.org

2 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. Dual EC is an algorithm to compute pseudorandom num-
bers starting from some random input. Dual EC was standardized by
NIST, ANSI, and ISO among other algorithms to generate pseudoran-
dom numbers. For a long time this algorithm was considered suspicious
– the entity designing the algorithm could have easily chosen the param-
eters in such a way that it can predict all outputs – and on top of that
it is much slower than the alternatives and the numbers it provides are
more biased, i.e., not random.

The Snowden revelations, and in particular reports on Project Bullrun
and the SIGINT Enabling Project, have indicated that Dual EC was
part of a systematic effort by NSA to subvert standards.

This paper traces the history of Dual EC including some suspicious
changes to the standard, explains how the back door works in real-life
applications, and explores the standardization and patent ecosystem in
which the standardized back door stayed under the radar.

Keywords. Random-number generation, back doors, NSA, ANSI, NIST,
ISO, RSA, Certicom, undead RNGs.

1 Introduction

The story of the Dual EC standard is one of the most interesting ones in modern
cryptography.

This work was supported by the European Commission through the ICT program
under contract INFSO-ICT-284833 (PUFFIN), by the Netherlands Organisation for
Scientific Research (NWO) under grant 639.073.005, and by the U.S. National Sci-
ence Foundation under grants 1018836 and 1314919. “Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Founda-
tion.” Permanent ID of this document: d3ueael2e7c4i2s3b7a0cek0d2o3o5r4e2d.
Date: 2015.07.31.

2 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

Dual EC is a pseudorandom number generator. Soon after its publication
it was criticized by experts for its poor design. It is thousands of times slower
than alternatives; the numbers that it produces as output are biased, flunking
the most basic requirement for a pseudorandom number generator; and, most
importantly, it is mathematically guaranteed to have a skeleton key that makes
the output entirely predictable to anyone in possession of the key. An honest
designer would not have kept the key, but a pseudorandom number generator
should not have a skeleton key in the first place.

Bruce Schneier wrote a damning article [34] about Dual EC in Wired Mag-
azine. By the end of 2007, in the view of the public cryptographic community,
Dual EC was dead and gone.

1.1. The awakening. On 5 September 2013, the New York Times [31], Pro-
Publica [19], and The Guardian [2] reported on the “SIGINT Enabling Project”.
The New York Times wrote:

Cryptographers have long suspected that the agency planted vulnerabil-
ities in a standard adopted in 2006 by the National Institute of Stan-
dards and Technology and later by the International Organization for
Standardization, which has 163 countries as members.
Classified N.S.A. memos appear to confirm that the fatal weakness, dis-
covered by two Microsoft cryptographers in 2007, was engineered by the
agency. The N.S.A. wrote the standard and aggressively pushed it on the
international group, privately calling the effort “a challenge in finesse.”

The surprise for the public cryptographic community was not so much this
confirmation of what had already been suspected, but rather that NSA’s back-
dooring of Dual EC was part of an organized approach to weakening crypto-
graphic standards. Not mentioned in the reports was the biggest surprise, namely
that Dual EC was not dead at all: NIST’s list of “DRBG validations” [21] showed
that Dual EC was provided in dozens of commercial cryptographic software li-
braries. Dual EC was even the default pseudorandom number generator in RSA
Security’s BSAFE library.

How could an algorithm so thoroughly criticized in public by the experts be
flourishing in fielded implementations? A partial explanation surfaced in Decem-
ber 2013, when Reuters [20] reported that NSA paid RSA “$10 million in a deal
that set [Dual EC] as the preferred, or default, method for number generation
in the BSafe software.”

1.2. Contents. This article covers the history of Dual EC to the extent that
it is known to the public, including some information that had not previously
been brought to light. This article also explains technical aspects of how the
back door works and how it can be exploited in practical applications.

Section 2 introduces the ecosystem that brings random numbers to crypto-
graphic users. Section 3 tells the story of how Dual EC was standardized, includ-
ing NSA’s control over NIST and ANSI, and ANSI’s control over ISO. Section 4
tells the story of how Dual EC escaped modifications that would have destroyed
the back door. Section 5 explains the mathematical details of the back door,

Dual EC: A Standardized Back Door 3

including a March 2007 modification to the NIST standard that improved Dual
EC’s exploitability. Section 6 explains how to exploit the back door inside TLS.
Section 7 describes “Extended Random”, a TLS extension whose overt purpose
lacks justification and whose covert effect is to further improve the exploitability
of Dual EC. Section 8 describes Certicom’s patents on Dual EC exploitation and
Dual EC escrow avoidance.

We thank Jeff Larson for interesting discussions and for providing us with the
public comments used in Section 3. We thank Bart Preneel for providing us with
the change history for ISO used in Section 3.3. We thank another expert who
chose to remain anonymous for support in the investigation and interpretation
of Certicom’s United States patent application.

We also relied on a repository of public documents OCRed and posted by
Matt Green [11] as a result of two FOIA requests, one from Matthew Stoller and
United States Representative Alan Grayson, the other from Andrew Crocker
and Nate Cardozo from the Electronic Frontier Foundation. NIST subsequently
posted higher-quality color copies of these documents [26], although without
OCR.

Our website https://projectbullrun.org/dual-ec/ contains more detail
regarding several aspects of Dual EC and its history and a collection of links to
related documents.

2 Where do random numbers come from?

Random numbers are the most basic building block of cryptographic protocols.
Some random numbers are secrets, used as keys that must never be guessed;
security relies on these numbers not being predictable. Other random numbers
are public “nonces”, numbers that must be used just once by the sender and
receiver and never used again.

Random-number generation normally starts with a limited amount of phys-
ical randomness harvested from unpredictable elements of the computer. This
physical randomness is then cleaned from possible biases, resulting in an even
smaller amount of “true randomness”, which is then stretched into many random
numbers using a cryptographic algorithm called a “pseudorandom number gen-
erator” (PRNG). Such an algorithm is “deterministic”, meaning that anybody
who knows the initial true randomness can predict all future outputs—but this
true randomness is always kept secret. The most important design goal for a
PRNG is that outputs should not be predictable from any other outputs. This
implies that it should be impossible to learn anything about the internal state
of the algorithm based on the outputs.

A cryptographic algorithm is simply a sequence of instructions. Dedicated
users who need to protect high-value information in a world full of compromised
computers occasionally follow cryptographic instructions using pencil and pa-
per and dice, but normal users rely on their computers to run cryptographic
software. This software comes from developers who have collected implementa-
tions of various cryptographic algorithms into “cryptographic software libraries”,

https://projectbullrun.org/dual-ec/

4 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

such as the open-source OpenSSL library, RSA Security’s BSAFE library, and
Microsoft’s SChannel library. Each of these libraries includes PRNGs, and uses
the random numbers from those PRNGs to support advanced cryptographic op-
erations such as Transport Layer Security (TLS), the security mechanism that
defends HTTPS web pages against espionage and sabotage.

Where do software developers obtain the cryptographic algorithms that they
decide to implement? The ultimate answer is cryptographic algorithm design-
ers. Many designers have published cryptographic algorithms, and in particular
PRNGs, allowing them to be freely used by software developers. However, there
are also public evaluations showing that some of these designs are unsafe: the
resulting random numbers are biased (think of loaded dice that roll 6 more often
than 1), or have other detectable output patterns, or allow someone to figure
out the true randomness that was used as input. Sometimes software developers
quietly design their own PRNGs, but these PRNGs are usually shown to be
unsafe as soon as they are exposed to public scrutiny.

Software developers can, in principle, read the entire public literature on
designs and evaluations of PRNGs, and select safe PRNGs that have survived
careful evaluation. However, this is time-consuming, so most software develop-
ers instead rely on standardization organizations to issue standards specifying
trusted PRNGs. Noteworthy PRNG standards have been issued by the National
Institute of Standards and Technology (NIST), part of the United States De-
partment of Commerce; the American National Standards Institute (ANSI), a
non-profit organization; and the International Organization for Standardization
(ISO), a non-governmental organization whose members consist of ANSI and
the national standards institutes of 163 other countries.

To summarize, there is a large ecosystem of people and organizations involved
in designing, evaluating, standardizing, selecting, implementing, and deploying
PRNGs. Available documents and news stories strongly suggest that Dual EC
was part of a deliberate, coordinated, multi-pronged attack on this ecosystem:
designing a PRNG that secretly contains a back door; publishing evaluations
claiming that the PRNG is more secure than the alternatives; influencing stan-
dards to include the PRNG; further influencing standards to make the PRNG
easier to exploit; and paying software developers to implement the PRNG, at
least as an option but preferably as default.

3 Standardizing Dual EC

Dual EC is known as a NIST standard for the simple reason that NIST standards
are freely available online. Dual EC was also standardized by ANSI and by ISO,
and those standards are published in the sense that anyone can buy copies of the
standards, but the costs are high enough to interfere with public evaluation. As
NIST cryptographer John Kelsey put it in 2014 [18, page 15], “public review”
for ANSI standards was “not very public”.

Dual EC was publicly presented at a NIST workshop on random number
generation in July 2004. NIST posted the workshop slides [23] and has kept the

Dual EC: A Standardized Back Door 5

slides online since then. NIST also received special permission from ANSI to
post a June 2004 draft of ANSI standard X9.82 “Random Number Generation”
before the workshop, but NIST took the draft down after the workshop.

Several NSA employees participated actively in the workshop, but they did
not present Dual EC. Instead Dual EC was described as part of a presentation
“Number Theoretic DRBGs” [16] by Don Johnson from Entrust. Dual EC was
obviously a very slow PRNG, but Johnson’s presentation claimed that this was
justified because Dual EC provided “increased assurance” (boldface and un-
derline in original) compared to other PRNGs. Dual EC appeared in full detail
in the June 2004 ANSI X9.82 draft.

NIST developed its own Special Publication (SP) 800-90 in parallel with
ANSI X9.82, with essentially the same text. NIST published a draft of SP 800-
90 on 16 December 2005, asking for comments by 1 February 2006, six and a
half weeks later. The draft specified 4 PRNGs; one of those PRNGs was Dual
EC.

3.1. Ignoring biases. Kristian Gjøsteen from the Norwegian University of Sci-
ences and Technology sent NIST a paper [10] in March 2006 objecting to Dual
EC as being “flawed”. Johnson’s slides, after presenting schematics for Dual EC,
had discussed biases in the resulting bit strings and made recommendations of
how to deal with these biases; but Gjøsteen’s paper showed that the bit strings
were even more strongly biased.

“While the practical impact of these results are modest, it is hard to see
how these flaws would be acceptable in a pseudo-random bit generator based
on symmetric cryptographic primitives,” Gjøsteen wrote. “They should not be
accepted in a generator based on number-theoretic assumptions.”

Gjøsteen’s attack was improved in a May 2006 paper [35] by Berry Schoen-
makers and Andrey Sidorenko from Technische Universiteit Eindhoven. “Our
experimental results and also empirical argument show that [Dual EC] is inse-
cure,” Schoenmakers and Sidorenko wrote.

The most obvious way to stop the attacks would have been to modify Dual EC
to output far fewer bits per step, but Schoenmakers and Sidorenko emphasized
that this would not make Dual EC “provably secure” and that there would still
be “no reasons to use this generator”. In retrospect it is easy to see that this
modification would also have closed the back door in Dual EC; but at that time
the existence of a back door had not yet been publicly announced.

NIST’s retrospective April 2014 online compilation of public 800-90 com-
ments [25] does not include either of these papers. Obviously NIST had received
Gjøsteen’s paper after its 1 February 2006 deadline for comments. On the other
hand, it turns out that NIST did not take this deadline seriously: NIST consid-
ered and acted upon comments that it received from Matt Campagna at Pitney
Bowes on 3 February 2006, and comments that it received from Johnson on 31
March 2006, also not included in the online compilation.3 NIST was continuing
to actively edit SP 800-90 into May 2006; see [11].

3 These extra documents were obtained by journalist Jeff Larson in January 2014. We
are indebted to Larson for allowing us to present this new information here.

6 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

NIST standardized SP 800-90 in June 2006. Despite the objections from
Gjøsteen, Schoenmakers, and Sidorenko, this final version of SP 800-90 included
Dual EC, with its full bias.

3.2. Hiding behind NIST. None of the NIST workshop documents listed any
author or designer of Dual EC. The authors listed for SP 800-90 were both from
NIST: Elaine Barker and John Kelsey. As far as we know, none of the documents
published at the time pointed to NSA as the source of Dual EC.

However, NIST’s private response to Campagna sheds interesting light on
the authorship of Dual EC.4 Campagna had sent email to Kelsey, cc’ing Barker.
Barker wrote back to Campagna as follows:

Elaine Barker <elaine.barker@nist.gov>

02/03/2006 09:17

To Matthew.Campagna@pb.com, John Kelsey <john.kelsey@nist.gov>

cc

Subject Re: some DRBG items

=0,,#$M&B?$+%?N,$,B"$F".%&?$,&$0%J$03&4,$,B"$(40KO>EO(!)*D$PNQ"$R&.C0./"/$1&4.$"'0+K$,&$("331$S0KK?".$0?/$)&3

L0.J&%J0$0,$T@<D

>K0+?"

This appears to confirm public statements from Kelsey in December 2013
[17] and May 2014 [18] referring to “designers of Dual EC DRBG at NSA” and
saying that “NSA provided Dual EC DRBG”.

Further confirmation that Kelsey was not the designer of Dual EC appears
in one of Kelsey’s internal drafts [22] of ANSI X9.82 Section 9.12, “Choosing
a DRBG algorithm”. The notes signed “JMK” (brackets in original) show that
Kelsey did not even feel competent to comment on Dual EC’s security, and that
he was relying critically on advice from NSA. See [22, p. 9]:

X.3 DRBGs Based on Hard Problems
[[Okay, so here’s the limit of my competence. Can Don or Dan or one of
the NSA guys with some number theory/algebraic geometry background
please look this over? Thanks! --JMK]]

See also a bit later in the document [22, p. 10]:

X.3.1 Dual EC DRBG
The DUAL EC DRBG relies for its security on the difficulty of the ellip-
tic curve discrete log problem--given (P,xP), determine x. Widely used
signature and key agreement schemes are based on this problem, as well.
A very conservative system design which had few performance require-
ments on its random number generator mechanism might thus choose the
DUAL EC DRBG as its DRBG. This would ensure that the security of
the whole application or system relied very cleanly on the difficulty of
this one problem.

4 As above, we are indebted to Larson for tracking down this information.

Dual EC: A Standardized Back Door 7

[[I’m really blowing smoke here. Would someone with some actual un-
derstanding of these attacks please save me from diving off a cliff right
here? --JMK]]

3.3. Taking control of ISO. By summer 2003, ISO/IEC Joint Technical Com-
mittee 1 Subcommittee 27 was far into its own multi-year process of standard-
izing random-number generators, not including Dual EC. Its internal 2003 draft
received more than 150 comments, but most of those comments were minor cor-
rections and clarifications such as changing “Any secure hash” to “Any secure
hash function”. The draft was approved by 19 of the 24 countries that voted,
including half of the countries that had sent in comments.

The United States comment [14] was strikingly different, the only comment
objecting to the “whole document”:

The U.S. National Body has reviewed ISO/IEC 2 CD 18031, N3578. We
feel that this document is lacking sufficient depth in many areas and sim-
ply is not developed enough to be an ISO standard which encompasses
both Non-deterministic and Deterministic Random Bit Generation. We
do feel that ANSI X9.82 Random Bit Generation standardization work
is much further developed and should be used as the basis for this ISO
standard.
To make ISO/IEC 18031 consistent with X9.82 would require extensive
commenting and revisions. To better progress this standard, the U.S.
has instead developed a contribution for ISO that is consistent with
ANSI X9.82, but written in ISO format. Furthermore, we believe this
contribution will also be complementary to ISO/IEC 19790.
We provide this contribution as an attachment, and propose that ISO
further develop this contribution as their standard.
Additionally, the U.S. recognizes that ANSI X9.82 is not an approved
standard and still requires further work. As ANSI X9.82 develops, the
U.S. will contribute these changes to ISO.

The attachment, 153 pages, was an early version of ANSI X9.82, including
a full description of Dual EC (using the same points P and Q that were later
standardized by NIST for the curves P-256, P-384, and P-521; see Section 4 for
discussion of the importance of P and Q).

ISO did what the United States told it to do. After two years it released
standard ISO 18031:2005, including Dual EC. This rather blunt takeover of the
ISO standard is, presumably, what NSA internally referred to as a “challenge in
finesse”.

4 Minding the P ’s and Q’s

Every summer hundreds of cryptographers gather in Santa Barbara for the an-
nual Crypto conference. The highlight of the conference is the three-hour “rump

8 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

session” on the evening of the second day, featuring a series of short talks on
very recent results.

Dan Shumow and Niels Ferguson, cryptographic researchers at Microsoft,
announced at the Crypto rump session in August 2007 that there was a “pos-
sibility of a back door” in Dual EC. The name Dual EC refers to two “elliptic
curve points” P and Q used inside the algorithm; what Shumow and Ferguson
explained [36] was a way for whoever had generated the points P and Q to start
from one random number produced by Dual EC and predict all subsequent ran-
dom numbers. Recall that some PRNG outputs are made public, while others
are secret; releasing just one public output would allow the attacker to predict
all subsequent secret outputs, obviously a security disaster.

“Break the random-number generator, and most of the time you break the
entire security system. Which is why you should worry about a new random-
number standard that includes an algorithm that is slow, badly designed and
just might contain a backdoor for the National Security Agency,” Bruce Schneier
wrote in a November 2007 article [34] for Wired Magazine. “My recommendation,
if you’re in need of a random-number generator, is not to use Dual EC DRBG
under any circumstances.”

However, NIST did not withdraw Dual EC from its standard. NIST sent
Schneier a letter [3] saying “We have no evidence that anyone has, or will ever
have, the ‘secret numbers’ for the back door . . . For this reason, we are not
withdrawing the algorithm at this time.”

4.1. Behind the scenes. Kelsey had already been asking questions about P
and Q as early as October 2004, as shown by the following email exchange [15]
between Kelsey and Johnson, made public in 2014:

Subject: [Fwd: RE: Minding our Ps and Qs in Dual_EC]

Date: Wednesday, October 27, 2004 at 12:09:25 PM Eastern Daylight Time

From: John Kelsey

To: larry.basham@nist.gov

---------------------------- Original Message ----------------------------

Subject: RE: Minding our Ps and Qs in Dual_EC

From: "Don Johnson" <DJohnson@cygnacom.com>

Date: Wed, October 27, 2004 11:42 am

To: "John Kelsey" <john.kelsey@nist.gov>

John,

P=G.

Q is (in essence) the public key for some random private key.

It could also be generated like a(nother) canonical G, but NSA kyboshed

this idea, and I was not allowed to publicly discuss it, just in case you

may think of going there.

Don B. Johnson

-----Original Message-----

Dual EC: A Standardized Back Door 9

From: John Kelsey [mailto:john.kelsey@nist.gov]

Sent: Wednesday, October 27, 2004 11:17 AM

To: Don Johnson

Subject: Minding our Ps and Qs in Dual_EC

Do you know where Q comes from in Dual_EC_DRBG?

Thanks,

-John

The “random private key” mentioned in Johnson’s message is the simplest
way that the Dual EC authors could have generated Q. However, from the per-
spective of the Shumow–Ferguson attack, this private key is exactly the secret
information needed to unlock the back door in Dual EC.

The alternative mentioned in Johnson’s message, generating Q “like a(nother)
canonical G”, would have made it much more difficult for the Dual EC authors
to know this “random private key”. It is hard to imagine any legitimate reasons
for NSA to have told Johnson not to talk about this idea. “I didn’t catch why
this was significant then,” Kelsey wrote in 2014.

According to Kelsey [18, page 24], Ferguson reported the Shumow–Ferguson
attack to ANSI in 2005. Two other participants in the ANSI discussions, Dan
Brown and Scott Vanstone from Certicom, had discovered the same attack before
21 January 2005 (see Section 8), but apparently did not report it to ANSI.

NSA’s response, according to Kelsey, was that NSA had “generated (P,Q)
in a secure, classified way”; that NSA wanted to allow existing devices using
this P and Q “to get FIPS validated” (i.e., certified by a testing laboratory to
meet NIST standards); and that it “would be reasonable to allow other users to
generate their own (P,Q)”.

NIST could easily have generated a new Q “like another canonical G”, and
recommended this Q as a replacement for NSA’s Q, which as noted above would
have made Dual EC exploitation much more difficult. NIST could nevertheless
have allowed NSA’s Q as a non-recommended option, answering NSA’s request
for FIPS validation. NIST could also have entirely eliminated this problematic
PRNG from the standard, ignoring NSA’s request.

Instead NIST added an appendix to its draft of SP 800-90 explaining how
users could generate their own P and Q, but (“to avoid using potentially weak
points”) specifically recommending against doing this. Furthermore, another
paragraph in SP 800-90 prohibits FIPS validation for any users doing this: see
[27, page 84] (“One of the following NIST approved curves with associated points
shall be used in applications requiring certification under FIPS 140-2”) and the
detailed testing instructions [24, page 19] (“CAVS Dual EC DRBG tests use
only the NIST Approved curves and associated points”).5 The rule forcing the
pre-described points for FIPS validation was already in the June 2004 draft of

5 CAVS stands for NIST’s Cryptographic Algorithm Validation System. “Crypto-
graphic algorithm validation is a prerequisite to the Cryptographic Module Vali-
dation Program (CMVP).” See http://csrc.nist.gov/groups/STM/cavp/.

http://csrc.nist.gov/groups/STM/cavp/

10 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

s0 s1
s1 = f(s0)

r1

r1 = g(s1)

s2
s2 = f(s1)

s3 · · ·

r2 r3

s3 = f(s2) s4 = f(s3)

r1 = g(s1) r2 = g(s2) r3 = g(s3)

Fig. 5.1. General schematic of a state-based PRNG with functions f and g.

ANSI X9.82 and was not modified when a section on using alternative points
was added.

SP 800-90 did not discuss the origin of P and Q, and did not explain the
power available to whoever had generated P and Q. In hindsight it is quite
amazing how blindly NIST trusted NSA.

4.2. NSA’s public story. Richard George, who was Technical Director of the
Information Assurance Directorate at NSA from 2003 until his retirement in
2011, made the following claims regarding Dual EC in a talk [9] at the Infiltrate
conference in May 2014: “We were gonna use the Dual Elliptic Curve randomizer.
And I said, if you can put this in your standard, nobody else is gonna use it,
because it looks ugly, it’s really slow. It makes no sense for anybody to go there.
But I’ll be able to use it. And so they stuck it in, and I said by the way, you
know these parameters that we have here, as long as they’re in there so we can
use them, you can let anybody else put any parameters in that they want.”

As far as we know, there have been no public comments from NSA regard-
ing the prohibition on FIPS validation of alternative P and Q; NSA instructing
Johnson not to talk about generating a new Q; NSA paying RSA Security to
implement and use Dual EC; and NSA internally advertising its PRNG stan-
dardization as part of a systematic effort to weaken cryptographic standards.

5 How the Dual EC back door works

This section digs into mathematical details: how PRNGs work in general; how
Dual EC works; and how the back door works.

SP 800-90 allows users to refresh the internal state of PRNGs with some
additional input. This complicates the definition of Dual EC. There are actually
two slightly different versions of Dual EC in two releases of SP 800-90: the
June 2006 version [27], now called Dual EC 2006, and an updated March 2007
version, now called Dual EC 2007. Additional input breaks the back door in
Dual EC 2006 in many cases, often preventing the attacker from predicting the
Dual EC output. Fortunately for the attacker, Dual EC 2007 repairs the back
door, allowing the back door to be used in all cases, even when additional input
is provided.

Dual EC: A Standardized Back Door 11

s1s0 s2 s3

r1 r2 r3

s1 = x(s0P) s2 = x(s1P) s3 = x(s2P)

r1 = x(s1Q) r2 = x(s2Q) r3 = x(s3Q)

Fig. 5.2. Basic Dual EC algorithm using points P and Q on an elliptic curve.

5.1. PRNG structure: state updates and output functions. Figure 5.1
shows a general schematic of a PRNG. The PRNG maintains an internal state
si; the initial state s0 is initialized from an entropy source. Each time some
random output is requested from the PRNG, the internal state is updated from
si−1 to si using a function f such that si = f(si−1). After the internal state
is updated, the PRNG derives a certain number of random bits using another
update function g by computing ri = g(si) and returning some bits of ri. If more
bits are requested than available from ri, the PRNG updates the state again by
computing si+1 = f(si). Then ri+1 = g(si+1) is computed, and some bits from
ri+1 are appended to the previously generated bits. This process is repeated
until the requested number of bits have been generated.

For this process to be secure, it is crucially necessary that the internal state
is not learned by an attacker. An attacker who knows some internal state si is
able to compute all following states si+1, si+2, . . . and to reproduce all output
bits by computing ri, ri+1, ri+2, Therefore, the function g must be a one-
way function; otherwise an attacker who learns some random output is able to
compute the internal state of the PRNG. If the function g has a back door that
allows an attacker to compute the internal state of the PRNG, then the complete
PRNG is insecure.

5.2. Basic Dual EC algorithm. Dual EC follows the general PRNG scheme
described above. Dual EC specifies two points P and Q on the standard NIST
P-256 elliptic curve. The internal state of Dual EC is a 256-bit integer s. The
function f for updating the internal state is defined as f(s) = x(sP), computing
the sth multiple of P and returning the x-coordinate of the resulting point. The
function g for deriving some random output is defined as g(s) = x(sQ).

Both functions f and g are cryptographically secure one-way functions. It is
computationally hard to compute s given sP and P , i.e., to solve the elliptic-
curve discrete-logarithm problem (ECDLP).

Figure 5.2 illustrates the Dual EC algorithm. Given an initial state s0, the
PRNG updates the internal state by computing s1 = x(s0P) when some random
bits are requested. Then r1 = x(s0Q) is computed and the most significant 16
bits of r1 are discarded. Finally up to 30 random bytes are returned. If more than
30 bytes are required, the process is performed repeatedly, each time dropping
the most significant 16 bits of r. The output bits are concatenated and finally
returned.

12 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

s1s0 s2 s3

r1 r2 r3

t0 t1

s0 ⊕ H(adin0) s1 ⊕ H(adin1) s3 ⊕ H(adin3)x(t0P) x(t1P) x(s2P)

x(s1Q) x(s2Q) x(s3Q)

Fig. 5.3. Dual EC 2006 with additional input. Compare Figure 5.2.

Dual EC also allows larger variants using the P-384 and P-521 curves. The
state sizes are 384 and 521 bits respectively. The outputs are correspondingly
larger: 46 bytes (368 bits) and 63 bytes (504 bits).

5.3. Basic Dual EC back door. The Shumow–Ferguson attack works as fol-
lows. Assume that the attacker knows a scalar d such that P = dQ, and sees
the random output r1 (e.g., when r1 is used as a public nonce). Now he can
recompute a y-coordinate corresponding to the x-coordinate r1 using the curve
equation and obtains R = (r1, yr1) = s1Q for some s1 unknown to the attacker.
Finally, he computes d ·R = d · s1Q = s1dQ = s1P and learns the internal state
s2 as the x-coordinate x(dR) = x(s1P). Now, the attacker can reproduce all the
following Dual EC output of the victim. Thus, the knowledge of the scalar factor
d with P = dQ provides a back door for the attacker to the internal state of
Dual EC.

As described above, the most significant 16 bits of ri are discarded. However,
the attacker is able to recover the missing bits easily: the attacker requires at
most 216 attempts in order to find the missing bits.

5.4. Dual EC 2006. As mentioned earlier, NIST allows users to enter addi-
tional input into Dual EC. The additional input string may be, e.g., the current
system time, some counter value, some high-entropy randomness, or simply 0 if
no refresh is desired.

When random output is requested from Dual EC 2006, the hash of some
additional input string “adin” is xor’ed into the state before the basic state
update is performed. For example, in Figure 5.3, 30 bytes are requested when
the state is s0, 60 bytes are requested when the state is s1, and further bytes are
requested when the state is s3, so hashes of additional inputs are xor’ed into s0,
s1, and s3.

5.5. The partially broken Dual EC back door. If additional input is used
in Dual EC 2006, and the attacker sees random output of at most 30 bytes, then
the back door does not work any more. Assume the attacker observes r1. Since
s1 has been modified with some additional input string and since there is no
more known relation between r1 and s2, the attacker can no longer apply his

Dual EC: A Standardized Back Door 13

s1 s3 s4

r1 r3 r4

t0 t2

s0 s2 s5

s0 ⊕ H(adin0) s2 ⊕ H(adin2) s5 ⊕ H(adin5)

x(t0P)

x(s1P)

x(t2P) x(s3P)

x(s4P)

x(s1Q) x(s3Q) x(s4Q)

Fig. 5.4. Dual EC 2007 with additional input. Note the additional state update com-
pared to Figure 5.3.

back-door computation. Even if the attacker can guess adin1, he is not able to
recover the internal state from r1.

The back door still works in case the attacker observes some random output
that is longer than 30 bytes. For example, if the attacker observes combined
output from r2 and r3, he can simply compute R2 = (r2, yr2) and obtain the
internal state s3 = x(dR2) = x(ds2Q) = x(s2P). In order to compute the follow-
ing output values, the attacker needs to correctly guess the following additional
input strings.

The ability of an implementation of Dual EC to refresh the internal state
using an additional input string breaks the back door for the attacker in many
practical cases where the amount of randomness observed by the attacker is
smaller than or equal to 30 bytes.

5.6. Dual EC 2007: the repaired back door. Dual EC 2007 demands an
additional update step of the internal state at the end of each invocation. That
means that after the requested number of random bits have been generated, the
internal state is updated one more time by computing si+1 = x(siP). Figure 5.4
illustrates the modified algorithm.

Because of this additional state update, the attacker is able to apply his
back-door computation. Given the random output r1, the attacker computes
R1 = (r1, yr1) and obtains the internal state s2 = x(dR1) = x(ds1Q) = x(s1P).
However, in order to compute the following random output, the attacker still
has to guess any additional input strings (if the specific implementation of Dual
EC used by the victim is making use of additional input).

5.7. Forward secrecy. The official reason for the change from Dual EC 2006
to Dual EC 2007 was to provide “backtracking resistance”.

“Backtracking” does not mean working backwards from random outputs to
earlier random outputs, which would be a serious security problem. It means
working backwards from the internal state to earlier random numbers. For ex-
ample, if f in Figure 5.1 is not one-way, the attacker can backtrack to all previous
internal states and compute all previous random numbers.

14 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

Of course, PRNGs are designed to preserve the secrecy of the internal state.
The idea of “backtracking resistance”, also called “forward secrecy”, is to reduce
the damage in the extreme situation of an attacker somehow stealing the internal
state: the attacker will be able to predict all future random numbers but will
not be able to compute earlier random numbers.

The function f in Dual EC has always been one-way. The only issue with
“backtracking resistance” in Dual EC 2006 with additional input is that an at-
tacker who sees the current state s1 can compute the current random number r1.
This issue disappears as soon as the next additional input is provided, allowing
s1 to be replaced with s2; i.e., the current random number is protected against
theft as soon as a new random number is generated.

The obvious way to fix theft of the current random number is to first output
this number, then immediately absorb additional input, then apply the function
f to update the state. This provides full “backtracking resistance”; it is also
simpler and more efficient than Dual EC 2007. However, from the attacker’s
perspective, Dual EC 2007 is much more satisfactory because it fixes the back
door.

6 Exploiting the back door in Dual EC implementations

Their eyes open wide when I talk about how how hard it is to really
get the information they assume they just get to attack this thing. . . .
I’ve challenged any of them to actually generate their own parameters
and show me that in real life they can recover that. No one has done
it yet. —Richard George, May 2014 [9]

The basic Dual EC attack allows the attacker to predict all subsequent Dual
EC outputs, assuming that the attacker has seen a sufficiently long stretch of
contiguous output bits. If all output bits were kept secret then the attack could
not even get started. Some cryptographic protocols send random bits through
the network, but it is not immediately obvious that Dual EC is exploitable
inside real protocols, such as the widely deployed TLS standard, the primary
encryption mechanism used for communication in the Internet today.

This section summarizes the results of a paper “On the practical exploitabil-
ity of Dual EC in TLS implementations” [8] posted in April 2014 and presented at
the USENIX Security Symposium in August 2014. This paper is joint work that
we carried out with Stephen Checkoway, Matt Fredrikson, Adam Everspaugh,
Matt Green, Tom Ristenpart, Jake Maskiewicz, and Hovav Shacham.

The paper shows that the basic Dual EC attack ignores critical limitations
and variations in the amount of the PRNG output actually exposed in TLS, ad-
ditional inputs to the PRNG, PRNG reseeding, alignment of PRNG outputs, and
outright bugs in Dual EC implementations. The levels of Dual EC exploitability
vary between RSA Security’s BSAFE, Microsoft’s SChannel, and OpenSSL.

However, in all analyzed situations where Dual EC was actually used in
TLS, the Dual EC back door turned out to be exploitable by anyone who knows
the secret d. TLS transmits enough random data in plain text during the TLS

Dual EC: A Standardized Back Door 15

handshake, while it uses other random data to generate secret keys; the paper
showed how to recover those secret keys.

6.1. How targets vary. The paper investigated four TLS libraries offering
Dual EC: OpenSSL-FIPS (a FIPS-validated version of OpenSSL), Microsoft’s
SChannel, and two versions of RSA Security’s BSAFE, namely BSAFE-Java
and BSAFE-C.

The key to the back door, i.e., the factor d such that P = dQ, is not publicly
known, so the paper replaced (P,Q) in each library with a new (P,Q) using
a known key. Replacing the points in SChannel, BSAFE-Java, and BSAFE-C
required some reverse engineering. Replacing the points in OpenSSL-FIPS was
relatively easy because OpenSSL is open-source.

OpenSSL-FIPS turned out to have a severe Dual EC bug, despite FIPS val-
idation: the self-test of the library consistently failed when OpenSSL-FIPS was
configured to use Dual EC. It is therefore reasonable to guess that nobody ever
used Dual EC with OpenSSL. On the other hand, there is an obvious fix for the
bug, producing a modified library “OpenSSL-fixed” studied in the paper; users
of OpenSSL-FIPS might have silently fixed this bug without reporting it. The
other libraries had functional Dual EC implementations, and Dual EC was the
default PRNG for both BSAFE-Java and BSAFE-C.

OpenSSL-fixed was the only library that used an additional input string for
each request for random output, thus increasing the cost of the basic attack
by the need to guess the adin; the other three libraries did not use any adin.
BSAFE-Java, BSAFE-C, and OpenSSL-fixed implemented Dual EC 2007, with
the additional update step at the end of each invocation. It appears that SChan-
nel tried to implement Dual EC 2007 but accidentally implemented something
equivalent to Dual EC 2006 instead: SChannel computes the additional state
update but discards the result and continues with the previous state. This does
not hurt Dual EC exploitability since SChannel does not use adin. One other
difference between the Dual EC implementations is that BSAFE-C buffered un-
used random bytes for consecutive invocations, reducing the computational cost
of Dual EC.

Beyond the differences in the Dual EC implementations, the implementations
of TLS varied in how they used random output from Dual EC. By default each
library generated a different number of random values, used random values in
a different order in the TLS handshake, and used a different cipher suite. The
paper used each library as a TLS server, and investigated an ephemeral cipher
suite.

In a typical example of a TLS handshake with an ephemeral key exchange,
the server generates random numbers for the session ID, the server random, the
ephemeral secret a, and (depending on the cipher suite) the signature nonce.
Both server random and session ID are sent in plaintext over the wire and there-
fore can be used as entry points for the attack. If the cipher suite uses “ECDHE”,
an ephemeral elliptic-curve Diffie–Hellman key exchange, the ephemeral secret
is used to compute aP ; if the cipher suite uses “DHE”, an ephemeral Diffie–
Hellman key exchange (without elliptic curves), the ephemeral secret is used to

16 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

Attack Total Worst Case Runtime (min)

BSAFE-C v1.1 0.04
BSAFE-Java v1.1 63.96

SChannel I 62.97
SChannel II 182.64

OpenSSL-fixed I 0.02
OpenSSL-fixed II 83.32

OpenSSL-fixed III 2k · 83.32

Fig. 6.1. Experimental timings for recovering the internal state of Dual EC from a TLS
handshake for several implementations on a four-node, quad-socket AMD Opteron 6276
(Bulldozer) computing cluster.

compute ga (for some integer g). The nonce is used to compute a signature. The
value from the key exchange and the signature (if available) are sent over the
wire as well and can be used to verify that the correct Dual EC internal state
has been found. Finally, client and server compute their secret encryption key
from the exchanged data; the attacker is able to recompute the same key once
he has found the internal state and obtained the server’s ephemeral secret.

6.2. Attack cost. Table 6.1 shows an overview of the worst-case runtimes for
the attack. The attacker has to spend a different computational effort for each
case, reflecting differences in the implementations of Dual EC and TLS.

The attack on BSAFE-C is the cheapest. For a TLS connection using DHE,
the server draws in consecutive order 32 bytes for the session ID, 28 bytes for
the server random, and 20 bytes for the ephemeral secret. The internal buffering
of random bytes reduces the number of bits that need to be guessed to only
16, because the consecutively drawn random values “session ID” and “server
random” can simply be concatenated to obtain 30 bytes of a single invocation
output. Therefore, at most 216 bit combinations need to be checked. A small
16-CPU research cluster was able to recover the internal state and break the
connection within 0.04 minutes.

Attacking the BSAFE-Java version is more expensive. Here, the TLS imple-
mentation (using an ECDHE cipher suite) does not obtain the session ID from
a call to Dual EC; the first value drawn from the PRNG is 28 bytes of the server
random. This is followed by a call for 32 random bytes for the secret DH key and
finally an ECDSA nonce. Thus, using the 28 bytes of the server random, 32 bits
need to be guessed to recover the 32-byte internal state, resulting in 232 possible
combinations. The research cluster used at most 64 minutes for the attack.

SChannel requests random data for an ECDHE cipher suite in a different
order. The TLS implementation first requests 32 bytes for the session ID, but
does not make all of these available to the attacker: it reduces the top four
bytes modulo 20000 before transmission. It then requests 40 bytes for the secret
ephemeral key; 28 bytes for the server random; and, finally, 32 bytes for the
secret ECDSA nonce.

Dual EC: A Standardized Back Door 17

For SChannel, there are two cases. “SChannel I” means that a sequence of
TLS handshakes is available to the attacker, so he can use the server random
from a previous TLS handshake in order to compute the internal state. In this
case, the attacker needs to guess the missing 32 bits from the 28-byte server
random. This requires up to 232 operations. The research cluster used less than
63 minutes.

“SChannel II” means that only data from a single TLS handshake is available
to the attacker in order to compute the internal state. In this computationally
more complex case, the back door computation must use the session ID as en-
try point for computing the ephemeral key. This requires about 218 guesses to
recover the original value before the modulo operation; each guess, in turn, re-
quires checking 216 possibilities since the most significant 16 bits were discarded.
Testing a possibility means recomputing the ECDHE public key. In total, this
case requires up to 234 recomputations. The research cluster used a bit more
than three hours.

OpenSSL-fixed requests first 32 bytes for the session ID, then 28 bytes for
the server random, and finally 32 bytes for the ephemeral key. The randomness
for the session ID is obtained in two 30-byte pieces, so it is particularly easy
to recompute the internal state. Only the first 16 “discarded” bits need to be
guessed; the correct state can quickly be verified by comparing the corresponding
16 bytes of the second piece with the last two bytes of the session ID.

Recall, however, that OpenSSL uses an additional input string in each request
for random data, to refresh the randomness of the internal state. This adin is a
concatenation of the current system time in seconds, the current system time in
microseconds, a monotonically increased 32-bit counter, and the process ID. The
current system time in seconds is known to the attacker since it is contained in
the TLS handshake. However, the remaining data of the adin needs to be guessed.

Table 6.1 shows three cases. “OpenSSL-fixed I” assumes that the entire adin
is known to the attacker; thus he only needs to guess the 16 missing bits for
the session ID and is able to recompute the state and follow all internal state
updates. The cluster used 0.02 minutes to recompute the state on 16 CPUs in
parallel.

“OpenSSL-fixed II” assumes that the attacker knows the counter (because
he may be attacking the very first TLS handshake when the counter is 0) and
the process ID (because it may be determined depending on the order in which
systems services are started during boot time). Then the attacker only needs
to recompute the current microsecond in which the adin was computed; this
requires at most 1,000,000 guesses. The research cluster recomputed the internal
state within 84 minutes.

Finally, if counter and/or process ID are not known, a multiple of the time
for OpenSSL II is required. “OpenSSL III” in the table includes a factor 2k,
giving an idea about the required time in case k bits of unknown adin need to
be guessed.

The attacks are easy to parallelize and scale well on a large number of CPUs.
Thus, an attacker who can afford a large CPU cluster is able to compute the

18 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

internal state in a much shorter time than the 16-CPU research cluster used in
the experiment. About 1,000 CPUs are sufficient to finish most of the attacks
(all except SChannel II and OpenSSL-fixed III) within 1 minute. A computing
cluster of the size of the Tianhe-2 supercomputer with 70,000 CPUs computes
most of the attacks in under one second.

6.3. Attack scenarios. An attack on a TLS connection does not need to be done
“online”, while the communication between the client and the server is ongoing.
It is possible to use the back door to retroactively break into a recorded TLS
connection at any time. The attack on TLS connections works as well when the
client instead of the server is targeted.

If the server is targeted, the recovered internal state can be used not only
to compute the encryption keys of the targeted connection but also of all future
connections to the server by any client (see the discussion of SChannel I). If
a signature scheme based on the digital signature algorithm (DSA, designed
by NSA) is used for server authentication, the knowledge of just one signature
nonce enables the attacker to compute the server’s secret identity key and thus
to impersonate the server.

7 Extended Random

The basic Dual EC attack requires the attacker to see at least a block of 30
Dual EC output bytes (and, of course, to know the back door for the Dual EC
parameters). As shown in the previous section, implementations of TLS often
make only 28 consecutive bytes public. This increases the cost of using the back
door from about 215 to about 231.

A single 231 computation is not a problem, but if the same attack is carried
out many times, say 2t times, then the attack costs are increased from 215+t to
231+t. This is a serious issue when t is large. Even worse, if Dual EC is used
with P-384 or P-521 instead of P-256, then there is a critical gap between the
standard 224 bits revealed by TLS and the 368 or 504 bits in a Dual EC output
block, and the attack becomes infeasible.

There are four proposals of TLS extensions that increase the amount of
PRNG output visible to an attacker: “Opaque PRF” [32] from 2006, “Extended
Random” [33] from 2008, “Additional PRF Inputs” [13] from 2009, and “Ad-
ditional Random” [12] from 2010. None of these extensions were standardized,
but BSAFE implements Extended Random as an option, and a 2012 summary
of TLS monitoring [1] reveals that occasionally, about once in every 77000 con-
nections, clients actively requested Extended Random.

7.1. How Extended Random affects Dual EC exploitation. A client that
supports “Extended Random” sends more random data in its initial “client ran-
dom” in its TLS handshake: instead of 224 bits it sends a string of random bits
at least “twice as long as the security level”, i.e., ≥256 bits. If the server also
supports “Extended Random” then the server responds with its own “server
random” of the same length that the client chose.

Dual EC: A Standardized Back Door 19

Extended Random reduces the Dual EC attack cost from 231 to 215, since
the attacker no longer needs to guess 16 extra missing bits. Extended Random
also simplifies the attack, because it includes more than one block of output: the
attacker easily and efficiently confirms guesses for internal Dual EC states by
comparing the potential next output to the next bits of the extended randomness.
A 512-bit Extended Random also makes attacks feasible against, e.g., the P-521
variant of Dual EC.

To summarize: From the perspective of a Dual EC attacker, there are obvious
benefits to Extended Random.

7.2. The official reason for Extended Random. Extended Random was
proposed in an Internet-Draft by Eric Rescorla (RTFM, Inc.) and Margaret
Salter (NSA) in April 2008. The latest version, draft 02, is from 2 March 2009:

Network Working Group E. Rescorla

Internet-Draft RTFM, Inc.

Intended status: Informational M. Salter

Expires: September 3, 2009 National Security Agency

March 02, 2009

Extended Random Values for TLS

draft-rescorla-tls-extended-random-02.txt

Section 6 of the document acknowledges a funding source: “This work was
supported by the US Department of Defense.”

The Internet-Draft states the following rationale for extended randomness:

The United States Department of Defense has requested a TLS mode

which allows the use of longer public randomness values for use with

high security level cipher suites like those specified in Suite B

[I-D.rescorla-tls-suiteb]. The rationale for this as stated by DoD

is that the public randomness for each side should be at least twice

as long as the security level for cryptographic parity, which makes

the 224 bits of randomness provided by the current TLS random values

insufficient.

“Cryptographic parity” is not a common phrase among cryptographers. It is
not defined in the document, and its intended meaning is highly unclear. Fur-
thermore, there is no known attack strategy that comes even close to exploiting
the 224 bits of randomness used in TLS.

TLS encrypts data using a “master secret” computed from the server’s 224-
bit random value, the client’s 224-bit random value, and a “pre-master secret”.
The pre-master secret is the foundation of TLS security: in ECC cipher suites it
is obtained from a DH key exchange between client and server, and in RSA cipher
suites it is chosen by the client and encrypted to the RSA key of the server. The
pre-master key is already at least twice as large as the security level. Even if the
client constantly reuses the same pre-master secret and random value, the server
has negligible chance of ever repeating its 224-bit random value with a properly

20 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

functioning RNG: a server generating an incredible 1000000000000000000 ran-
dom 224-bit values has chance below 0.0000000000000000000000000000001 of
seeing the same value twice.

The Internet-Draft contains no further explanation to support its allegation
of 224 bits being insufficient. As far as we know, NSA has not attempted to
defend this allegation in other venues. Meanwhile, to the extent that Extended
Random is supported, it has an undisputed impact on the exploitability of Dual
EC.

8 Certicom patents

The Canadian company Certicom (now part of Blackberry) has patents in mul-
tiple countries on

– Dual EC exploitation: the use of Dual EC for key escrow (i.e., for a deliberate
back door) and

– Dual EC escrow avoidance: modifying Dual EC to avoid key escrow.

The patent filing history also shows that

– Certicom knew the Dual EC back door by January 2005;
– NSA was informed of the Dual EC back door by April 2005 (even if they did

not know it earlier); and
– the patent application, including examples of Dual EC exploitation, was pub-

licly available in July 2006, just a month after SP 800-90 was standardized.

This section cites several documents related to the patent applications and
patents. We have a web page [5] with more details and cached copies of the
documents.

A short summary of the general patenting process is that a party seeking to
protect its intellectual property files a patent application with a national patent
office. Often the initial application is a so-called “provisional” application, mean-
ing that the details or the claims are not fully worked out; this gives an official
time stamp on the possible invention. Often patent applications are submitted
for more than one country using the “Patent Cooperation Treaty” (PCT) to
start with the national filing. Certicom submitted the patent in the US and also
filed for patents in Canada, Europe, and Japan.

8.1. Publicity and the avoidance thereof. In early 2005, Certicom began
trying to patent both Dual EC exploitation and Dual EC escrow avoidance. The
patent application lists Daniel R. L. Brown and Scott A. Vanstone as “inventors”.

Certicom never drew public attention to these patenting efforts, or to the
possibility of a back door in Dual EC. Their actions went generally unnoticed
until 28 December 2013, when Certicom’s patent application was announced by
Lange in a presentation [4] with Bernstein and Heninger at the 30th Chaos Com-
munication Congress, crediting a tweet [28] by “nymble” earlier in the month.

Dual EC: A Standardized Back Door 21

“At some point, I clued into the possibility of a backdoor, and, among other
things, tried to make sure the possibility was at least publicly known, at first qui-
etly: with a patent, and with a comment within my March 2006 eprint,” Brown
wrote in email [6] to the CFRG mailing list a few days after the presentation.
“Later, others raised much more publicity, which seemed sufficient to me. I had
expected such publicity to cause the proposers, X9F1 and NIST to withdraw the
default P&Q from the standard.”

8.2. The provisional patent application. The provisional patent application
does not claim to have invented Dual EC per se, and does not clarify who
invented Dual EC. It cites ANSI X9.82 [29, page 2, paragraph 0003]:

The American National Standards Institute (ANSI) has set up an Ac-
credited Standards Committee (ASC) X9 for the financial services indus-
try, which is preparing a [sic] American National Standard (ANS) X9.82
for cryptographic random number generation (RNG). One of the RNG
methods in the draft of X9.82, called Dual EC DRBG, uses elliptic curve
cryptography (ECC) for its security. Dual EC DRBG will hereinafter be
referred to as elliptic curve random number generation (ECRNG).

The provisional patent application describes the Dual EC back door [29, page
4, paragraphs 0010–0013]:

The applicant has recognised that anybody who knows an integer d such
that Q = dP . . . can compute U from R as U = eR. . . . The truncation
function means that the truncated bits of R would have to be guessed. . . .
The updated state is u = z(U), so it can be determined from the correct
value of R. Therefore knowledge of r and e allows one to determine the
next state to within a number of possibilities somewhere between 26 and
219. This uncertainty will invariably be eliminated once another output
is observed, whether directly or indirectly through a one-way function.
. . . It has therefore been identified by the applicant that this method
potentially possesses a trapdoor, whereby standardizers or implementers
of the algorithm may possess a piece of information with which they can
use a single output and an instantiation of the RNG to determine all
future states and output of the RNG, thereby completely compromising
its security.

The provisional patent application also describes ideas of how to make ran-
dom numbers available to “trusted law enforcement agents” or other “escrow
administrators”. For example [29, page 9, paragraph 0039]:

In order for the escrow key to function with full effectiveness, the es-
crow administrator . . . needs direct access to an ECRNG output value
r that was generated before the ECRNG output value . . . which is to
be recovered. It is not sufficient to have indirect access to r via a one-
way function or an encryption algorithm. . . . A more seamless method

22 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

may be applied for cryptographic applications. For example, in the SSL
and TLS protocols, which are used for securing web (HTTP) traffic, a
client and server perform a handshake in which their first actions are to
exchange random values sent in the clear.

The provisional patent application also describes various ways to avoid the
back door, such as [29, page 7, paragraphs 0028 and 0031] choosing P and Q as
hashes of random seeds in a way similar to ANSI X9.62 (the idea that NSA told
Johnson not to talk about; see Section 4.1):

An arbitrary string is selected . . . the hash is then converted to a field
element . . . regarded as the x-coordinate of Q . . . To effectively prevent
the existence of escrow keys, a verifiable Q should be accompanied with
either a verifiable P or a pre-established P.

It is clear that Brown and Vanstone were aware of the Dual EC back door,
and ways to exploit it, by January 2005 when the provisional patent application
was filed. Technically, the applications were filed by Certicom, but both Brown
and Vanstone signed a “Declaration and Power of Attorney For Patent Appli-
cation” document in April 2006 [30, pages 39–41] declaring that they were the
“inventors” and had reviewed the 23 January 2006 patent application, which
includes a priority claim to the January 2005 provisional. Furthermore, the 23
January 2006 patent application contains all of the quotes given above, except
that instead of “verifiable” it used the phrase “verifiably random”.

8.3. Secrecy-order review. The United States Patent and Trademark Office
(USPTO) forwards patent applications to “appropriate agencies” [37] to decide
whether to impose secrecy orders on those applications:

[Applications] are screened upon receipt in the USPTO for subject mat-
ter that, if disclosed, might impact the national security. Such appli-
cations are referred to the appropriate agencies for consideration of re-
strictions on disclosure of the subject matter as provided for in 35 U.S.C.
181.
If a defense agency concludes that disclosure of the invention would be
detrimental to the national security, a secrecy order is recommended to
the Commissioner for Patents. The Commissioner then issues a Secrecy
Order and withholds the publication of the application or the grant of a
patent for such period as the national interest requires.

The USPTO referred Certicom’s provisional patent application to the De-
partment of Defense (DoD) for review. Eventually, on 2 February 2006, DoD
returned a “Department of Defense: Access acknowledgment/Secrecy order rec-
ommendation for patent application” form [29, page 19] recommending against
a secrecy order.

According to the USPTO, the referral letter was mailed on 7 April 2005,
and the response was entered into PAIR on 27 February 2006. The response

Dual EC: A Standardized Back Door 23

itself states that the referral was on 7 March 2005 and that the response was
forwarded on 7 February 2006.

The patent application was referred to DoD on 13 March 2006. The Navy
responded “No comments” on 15 March 2006. NSA recommended against a
secrecy order on 16 April 2007; see [30, page 48].

8.4. International patent applications. Certicom filed its patent application
internationally under the PCT in 2006. The international publication number is
WO2006/076804. This filing alone does not lead to national patents: the appli-
cant needs to request examination in the designated countries (and pay the ap-
plicable fees). Searching for WO2006076804 on http://patentscope.wipo.int

shows applications filed in Canada, Europe, and Japan.
The PCT stipulates (with certain exceptions) that international patent ap-

plications are published 18 months after the priority date. WIPO, the World
Intellectual Property Organization, published the patent application on 27 July
2006 in full length online [7]. This means that a clear explanation of the back
door and its (ab-)use was publicly available as of July 2006.

8.5. Resulting patents. Certicom received a European patent on 4 July 2012,
and subsequently received patents in the United States, Japan, and Canada.
The United States patent covers only escrow avoidance; the same seems to hold
for the Canadian and Japanese patents. However, the European patent reaches
farther than the United States patent: it covers both Dual EC exploitation and
Dual EC escrow avoidance. The claims on escrow use are more refined than in
the original patent application where they accounted for only one claim. The
European patent lapsed in many countries because Certicom did not pay main-
tenance fees in those countries, but Certicom paid its January 2015 fees for
France, Germany, the Netherlands, and Great Britain.

References

1. Bernhard Amann, Matthias Vallentin, Seth Hall, and Robin Sommer. Revisiting
SSL: A large-scale study of the Internet’s most trusted protocol, 2012. http:

//www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-015.pdf.
2. James Ball, Julian Borger, and Glenn Greenwald. Revealed: how US and

UK spy agencies defeat internet privacy and security. The Guardian,
September 5 2013. http://www.theguardian.com/world/2013/sep/05/

nsa-gchq-encryption-codes-security.
3. Elaine Barker. Letter to Bruce Schneier, 2007. https://github.com/

matthewdgreen/nistfoia/blob/master/6.4.2014%20production/109%20-%

20Nov%2028%202007%20Letter%20to%20Bruce%20from%20Barker%20-%20Wired%

20Commentary%20.pdf.
4. Daniel J. Bernstein, Nadia Heninger, and Tanja Lange. The year in crypto, 2013.

Presentation at 30th Chaos Communication Congress, https://hyperelliptic.
org/tanja/vortraege/talk-30C3.pdf.

5. Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Certicom’s patent
applications regarding Dual EC key escrow, 2014. https://projectbullrun.org/
dual-ec/patent.html.

http://patentscope.wipo.int
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-015.pdf
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-015.pdf
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/109%20-%20Nov%2028%202007%20Letter%20to%20Bruce%20from%20Barker%20-%20Wired%20Commentary%20.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/109%20-%20Nov%2028%202007%20Letter%20to%20Bruce%20from%20Barker%20-%20Wired%20Commentary%20.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/109%20-%20Nov%2028%202007%20Letter%20to%20Bruce%20from%20Barker%20-%20Wired%20Commentary%20.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/109%20-%20Nov%2028%202007%20Letter%20to%20Bruce%20from%20Barker%20-%20Wired%20Commentary%20.pdf
https://hyperelliptic.org/tanja/vortraege/talk-30C3.pdf
https://hyperelliptic.org/tanja/vortraege/talk-30C3.pdf
https://projectbullrun.org/dual-ec/patent.html
https://projectbullrun.org/dual-ec/patent.html

24 Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen

6. Daniel R. L. Brown. Re: Dual EC DRBG, 2014. http://permalink.gmane.org/

gmane.ietf.irtf.cfrg/2300.

7. Daniel R. L. Brown and Scott A. Vanstone. Elliptic curve random number genera-
tion, 2006. Patent application published by WIPO, http://tinyurl.com/oowkk36.

8. Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green,
Tanja Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Ho-
vav Shacham, and Matthew Fredrikson. On the practical exploitability of Dual
EC in TLS implementations. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 319–335. USENIX Association, August 2014. https://

projectbullrun.org/dual-ec/documents/dualectls-20140606.pdf.

9. Richard George. Life at both ends of the barrel: an NSA targeting retrospective,
2014. http://vimeo.com/97891042, keynote talk at Infiltrate conference.

10. Kristian Gjøsteen. Comments on Dual-EC-DRBG/NIST SP 800-90, draft
December 2005, 2006. http://www.math.ntnu.no/~kristiag/drafts/

dual-ec-drbg-comments.pdf.

11. Matthew D. Green. Results of a recent FOIA for NIST documents related to the
design of Dual EC DRBG, 2015. https://github.com/matthewdgreen/nistfoia.

12. Paul Hoffman. Additional random extension to TLS, Febru-
ary 2010. Internet-Draft version 01, http://tools.ietf.org/html/

draft-hoffman-tls-additional-random-ext-01.

13. Paul Hoffman and Jerome Solinas. Additional PRF inputs for TLS,
October 2009. Internet-Draft version 01, http://tools.ietf.org/html/

draft-solinas-tls-additional-prf-input-01.

14. Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommit-
tee SC 27, IT Security techniques. US national body comments on ISO/IEC 2nd
CD 18031. Attachment 10 to SC27 N3685, 2003. https://projectbullrun.org/

dual-ec/documents/us-comment-to-iso.pdf.

15. Don Johnson. Minding our Ps and Qs in Dual EC, 2004. http:

//csrc.nist.gov/groups/ST/crypto-review/documents/Email_Oct%2027%

202004%20Don%20Johnson%20to%20John%20Kelsey.pdf.

16. Don Johnson. Number theoretic DRBGs, 2004. http://csrc.nist.gov/groups/

ST/toolkit/documents/rng/NumberTheoreticDRBG.pdf.

17. John Kelsey. 800-90 and Dual EC DRBG, 2013. http://csrc.nist.gov/groups/
SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf.

18. John Kelsey. Dual EC in X9.82 and SP 800-90, 2014. http://csrc.nist.gov/

groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf.

19. Jeff Larson, Nicole Perlroth, and Scott Shane. Revealed: The
NSA’s secret campaign to crack, undermine Internet security. Pro-
Publica, September 2013. https://www.propublica.org/article/

the-nsas-secret-campaign-to-crack-undermine-internet-encryption.

20. Joseph Menn. Exclusive: Secret contract tied NSA and security industry pio-
neer. Reuters, December 2013. http://www.reuters.com/article/2013/12/20/

us-usa-security-rsa-idUSBRE9BJ1C220131220.

21. National Institute for Standards and Technology. DRBG validation list. http:

//csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html.

22. National Institute for Standards and Technology. Internal draft of X9.82 section
9.12, 2004? https://github.com/matthewdgreen/nistfoia/blob/master/6.4.

2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.

pdf, received through FOIA.

http://permalink.gmane.org/gmane.ietf.irtf.cfrg/2300
http://permalink.gmane.org/gmane.ietf.irtf.cfrg/2300
http://tinyurl.com/oowkk36
https://projectbullrun.org/dual-ec/documents/dualectls-20140606.pdf
https://projectbullrun.org/dual-ec/documents/dualectls-20140606.pdf
http://vimeo.com/97891042
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://github.com/matthewdgreen/nistfoia
http://tools.ietf.org/html/draft-hoffman-tls-additional-random-ext-01
http://tools.ietf.org/html/draft-hoffman-tls-additional-random-ext-01
http://tools.ietf.org/html/draft-solinas-tls-additional-prf-input-01
http://tools.ietf.org/html/draft-solinas-tls-additional-prf-input-01
https://projectbullrun.org/dual-ec/documents/us-comment-to-iso.pdf
https://projectbullrun.org/dual-ec/documents/us-comment-to-iso.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/Email_Oct%2027%202004%20Don%20Johnson%20to%20John%20Kelsey.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/Email_Oct%2027%202004%20Don%20Johnson%20to%20John%20Kelsey.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/Email_Oct%2027%202004%20Don%20Johnson%20to%20John%20Kelsey.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/rng/NumberTheoreticDRBG.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/rng/NumberTheoreticDRBG.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf
https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf

Dual EC: A Standardized Back Door 25

23. National Institute for Standards and Technology. RNG workshop and standards
development, 2004. http://csrc.nist.gov/groups/ST/toolkit/random_number.
html#RNG%20WSD.

24. National Institute for Standards and Technology. The NIST SP 800-90A Deter-
ministic Random Bit Generator Validation System (DRBGVS); current version
from 2013, first version from 2009, 2013. http://csrc.nist.gov/groups/STM/

cavp/documents/drbg/DRBGVS.pdf.
25. National Institute for Standards and Technology. Compilation of public comments

on 2005 draft of SP 800-90, 2014. http://csrc.nist.gov/groups/ST/toolkit/

documents/CommentsSP800-90_2006.pdf.
26. National Institute for Standards and Technology. NIST FOIA material released

to COV: X9.82 and NIST SP 800-90 process (June 10, 2014), 2014. http://csrc.
nist.gov/groups/ST/crypto-review/review_materials.html.

27. National Institute of Standards and Technology. Special Publication 800-90:
Recommendation for random number generation using deterministic random bit
generators, 2012. First version June 2006, second version March 2007, http:

//csrc.nist.gov/publications/PubsSPs.html#800-90A.
28. nymble. Interesting patent on use of ECC random number generator for ‘escrow’.

Designed as backdoor in 2005. Twitter post on December 3, 2013. https://

twitter.com/nymble/status/408023522284285952.
29. Patent Application Information Retrieval (PAIR). Image file wrapper for pro-

visional application 60644982, 2005. https://projectbullrun.org/dual-ec/

documents/60644982.pdf.
30. Patent Application Information Retrieval (PAIR). Image file wrapper for patent

application 11336814, 2006. https://projectbullrun.org/dual-ec/documents/

11336814.pdf.
31. Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards

of privacy on web. International New York Times, September 2013. http://www.

nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html.
32. Eric Rescorla and Margaret Salter. Opaque PRF inputs for TLS, De-

cember 2006. Internet-Draft version 00, http://tools.ietf.org/html/

draft-rescorla-tls-opaque-prf-input-00.
33. Eric Rescorla and Margaret Salter. Extended random values for TLS,

March 2009. Internet-Draft version 02, http://tools.ietf.org/html/

draft-rescorla-tls-extended-random-02.
34. Bruce Schneier. Did NSA put a secret backdoor in new encryption

standard?, 2007. http://archive.wired.com/politics/security/commentary/

securitymatters/2007/11/securitymatters_1115.
35. Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual Elliptic

Curve pseudorandom generator. Cryptology ePrint Archive, Report 2006/190,
2006. https://eprint.iacr.org/2006/190.

36. Dan Shumow and Niels Ferguson. On the possibility of a back door in the NIST
SP800-90 Dual Ec Prng. CRYPTO 2007 Rump Session, August 2007. http:

//rump2007.cr.yp.to/15-shumow.pdf.
37. United States Patent and Trademark Office. Review of applications for national

security and property rights issues, 2013. Manual of Patent Examining Procedure,
Section 115, http://www.uspto.gov/web/offices/pac/mpep/s115.html.

http://csrc.nist.gov/groups/ST/toolkit/random_number.html#RNG%20WSD
http://csrc.nist.gov/groups/ST/toolkit/random_number.html#RNG%20WSD
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/CommentsSP800-90_2006.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/CommentsSP800-90_2006.pdf
http://csrc.nist.gov/groups/ST/crypto-review/review_materials.html
http://csrc.nist.gov/groups/ST/crypto-review/review_materials.html
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
https://twitter.com/nymble/status/408023522284285952
https://twitter.com/nymble/status/408023522284285952
https://projectbullrun.org/dual-ec/documents/60644982.pdf
https://projectbullrun.org/dual-ec/documents/60644982.pdf
https://projectbullrun.org/dual-ec/documents/11336814.pdf
https://projectbullrun.org/dual-ec/documents/11336814.pdf
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://tools.ietf.org/html/draft-rescorla-tls-opaque-prf-input-00
http://tools.ietf.org/html/draft-rescorla-tls-opaque-prf-input-00
http://tools.ietf.org/html/draft-rescorla-tls-extended-random-02
http://tools.ietf.org/html/draft-rescorla-tls-extended-random-02
http://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
https://eprint.iacr.org/2006/190
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://www.uspto.gov/web/offices/pac/mpep/s115.html

	Dual EC: A Standardized Back Door

